资源类型

期刊论文 651

年份

2024 1

2023 69

2022 66

2021 56

2020 55

2019 42

2018 44

2017 31

2016 28

2015 31

2014 20

2013 30

2012 20

2011 21

2010 19

2009 21

2008 22

2007 20

2006 5

2005 7

展开 ︾

关键词

固体氧化物燃料电池 3

增材制造 3

二氧化碳 2

人工智能 2

冶金 2

力学性能 2

新材料 2

显微硬度 2

有色金属工业 2

材料 2

材料设计 2

离子液体 2

评价 2

重金属 2

重金属废水 2

颠覆性技术 2

2035 1

3D 打印 1

4D打印 1

展开 ︾

检索范围:

排序: 展示方式:

Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy

Lei WANG, Jing LIU

《能源前沿(英文)》 2013年 第7卷 第3期   页码 317-332 doi: 10.1007/s11708-013-0271-9

摘要: As the basis of modern industry, the roles materials play are becoming increasingly vital in this day and age. With many superior physical properties over conventional fluids, the low melting point liquid metal material, especially room-temperature liquid metal, is recently found to be uniquely useful in a wide variety of emerging areas from energy, electronics to medical sciences. However, with the coming enormous utilization of such materials, serious issues also arise which urgently need to be addressed. A biggest concern to impede the large scale application of room-temperature liquid metal technologies is that there is currently a strong shortage of the materials and species available to meet the tough requirements such as cost, melting point, electrical and thermal conductivity, etc. Inspired by the Material Genome Initiative as issued in 2011 by the United States of America, a more specific and focused project initiative was proposed in this paper—the liquid metal material genome aimed to discover advanced new functional alloys with low melting point so as to fulfill various increasing needs. The basic schemes and road map for this new research program, which is expected to have a worldwide significance, were outlined. The theoretical strategies and experimental methods in the research and development of liquid metal material genome were introduced. Particularly, the calculation of phase diagram (CALPHAD) approach as a highly effective way for material design was discussed. Further, the first-principles (FP) calculation was suggested to combine with the statistical thermodynamics to calculate the thermodynamic functions so as to enrich the CALPHAD database of liquid metals. When the experimental data are too scarce to perform a regular treatment, the combination of FP calculation, cluster variation method (CVM) or molecular dynamics (MD), and CALPHAD, referred to as the mixed FP-CVM-CALPHAD method can be a promising way to solve the problem. Except for the theoretical strategies, several parallel processing experimental methods were also analyzed, which can help improve the efficiency of finding new liquid metal materials and reducing the cost. The liquid metal material genome proposal as initiated in this paper will accelerate the process of finding and utilization of new functional materials.

关键词: liquid metal material genome     energy material     material discovery     advanced material     room-temperature liquid alloy     thermodynamics     phase diagram    

High heat flux thermal management through liquid metal driven with electromagnetic induction pump

《能源前沿(英文)》 2022年 第16卷 第3期   页码 460-470 doi: 10.1007/s11708-022-0825-9

摘要: In this paper, a novel liquid metal-based minichannel heat dissipation method was developed for cooling electric devices with high heat flux. A high-performance electromagnetic induction pump driven by rotating permanent magnets is designed to achieve a pressure head of 160 kPa and a flow rate of 3.24 L/min, which could enable the liquid metal to remove the waste heat quickly. The liquid metal-based minichannel thermal management system was established and tested experimentally to investigate the pumping capacity and cooling performance. The results show that the liquid metal cooling system can dissipate heat flux up to 242 W/cm2 with keeping the temperature rise of the heat source below 50°C. It could remarkably enhance the cooling performance by increasing the rotating speed of permanent magnets. Moreover, thermal contact resistance has a critical importance for the heat dissipation capacity. The liquid metal thermal grease is introduced to efficiently reduce the thermal contact resistance (a decrease of about 7.77 × 10−3 °C/W). This paper provides a powerful cooling strategy for thermal management of electric devices with large heat power and high heat flux.

关键词: high heat flux     liquid metal     electromagnetic pump     minichannel heat sink     thermal interface material    

液态金属科技与工业的崛起:进展与机遇

刘静

《中国工程科学》 2020年 第22卷 第5期   页码 93-103 doi: 10.15302/J-SSCAE-2020.05.016

摘要:

常温液态金属及其衍生材料是近年来异军突起的新兴功能物质,该领域取得了一系列突破性发现,催生出诸多全新的材料创制与应用,被视为人类利用金属的第二次革命。本文扼要介绍了液态金属物质科学领域涌现出的若干典型进展、基础问题与工业应用范例,剖析现象背后的科学规律,具体包括:芯片冷却与能源利用、印刷电子学与增材制造(3D打印)、生物材料学、柔性智能机器学。在此基础上,论述了提出“液态金属谷”的时代背景、发展液态金属新工业体系的基本途径,阐述了推进液态金属材料基因工程研究并构建相应数据库的重要意义。液态金属作为兼具基础探索与实际应用价值的重大科学、技术与工业前沿,发展前景广阔;相应研究有望促进人类物质文明进步、优化社会生产和生活方式,也将深刻影响中国乃至世界寻求新一代变革性科技与工业的进程。

关键词: 液态金属     新材料     颠覆性技术     新工业     先进冷却     印刷电子     生物医学材料     柔性机器人    

A multiscale material model for heterogeneous liquid droplets in solid soft composites

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1292-1299 doi: 10.1007/s11709-021-0771-3

摘要: Liquid droplets in solid soft composites have been attracting increasing attention in biological applications. In contrary with conventional composites, which are made of solid elastic inclusions, available material models for composites including liquid droplets are for highly idealized configurations and do not include all material real parameters. They are also all deterministic and do not address the uncertainties arising from droplet radius, volume fraction, dispersion and agglomeration. This research revisits the available models for liquid droplets in solid soft composites and presents a multiscale computational material model to determine their elastic moduli, considering nearly all relevant uncertainties and heterogeneities at different length scales. The effects of surface tension at droplets interface, their volume fraction, size, size polydispersity and agglomeration on elastic modulus, are considered. Different micromechanical material models are incorporated into the presented computational framework. The results clearly indicate both softening and stiffening effects of liquid droplets and show that the model can precisely predict the effective properties of liquid droplets in solid soft composites.

关键词: liquid in solid     soft composite     computational modeling     multiscale model     heterogeneity    

Surface tension of liquid metal: role, mechanism and application

Xi ZHAO, Shuo XU, Jing LIU

《能源前沿(英文)》 2017年 第11卷 第4期   页码 535-567 doi: 10.1007/s11708-017-0463-9

摘要: Surface tension plays a core role in dominating various surface and interface phenomena. For liquid metals with high melting temperature, a profound understanding of the behaviors of surface tension is crucial in industrial processes such as casting, welding, and solidification, etc. Recently, the room temperature liquid metal (RTLM) mainly composed of gallium-based alloys has caused widespread concerns due to its increasingly realized unique virtues. The surface properties of such materials are rather vital in nearly all applications involved from chip cooling, thermal energy harvesting, hydrogen generation, shape changeable soft machines, printed electronics to 3D fabrication, etc. owing to its pretty large surface tension of approximately 700 mN/m. In order to promote the research of surface tension of RTLM, this paper is dedicated to present an overview on the roles and mechanisms of surface tension of liquid metal and summarize the latest progresses on the understanding of the basic knowledge, theories, influencing factors and experimental measurement methods clarified so far. As a practical technique to regulate the surface tension of RTLM, the fundamental principles and applications of electrowetting are also interpreted. Moreover, the unique phenomena of RTLM surface tension issues such as surface tension driven self-actuation, modified wettability on various substrates and the functions of oxides are discussed to give an insight into the acting mechanism of surface tension. Furthermore, future directions worthy of pursuing are pointed out.

关键词: surface tension     liquid metal     soft machine     printed electronics     electrowetting     self-actuation    

Liquid metal thermal hydraulics R&D at European scale: achievements and prospects

《能源前沿(英文)》 2021年 第15卷 第4期   页码 842-853 doi: 10.1007/s11708-021-0743-2

摘要: A significant role for a future nuclear carbon-free energy production is attributed to fast reactors, mostly employing a liquid metal as a coolant. This paper summarizes the efforts that have been undertaken in collaborative projects sponsored by the European Commission in the past 20 years in the fields of liquid-metal heat transfer modeling, fuel assembly and core thermal hydraulics, pool and system thermal hydraulics, and establishment of best practice guidelines and verification, validation, and uncertainty quantification (UQ). The achievements in these fields will be presented along with the prospects on topics which will be studied collaboratively in Europe in the years to come. These prospects include further development of heat transfer models for applied computational fluid dynamics (CFD), further analysis of the consequences of fuel assembly blockages on coolant flow and temperature, analysis of the thermal hydraulic effects in deformed fuel assemblies, extended validation of three-dimensional pool thermal hydraulic CFD models, and further development and validation of multi-scale system thermal hydraulic methods.

关键词: liquid metal     thermal hydraulics     Europe    

Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics

Dan DAI, Jing LIU, Yixin ZHOU

《能源前沿(英文)》 2012年 第6卷 第2期   页码 112-121 doi: 10.1007/s11708-012-0186-x

摘要: A liquid metal magnetohydrodynamics generation system (LMMGS) was proposed and demonstrated in this paper for collecting parasitic power in shoe while walking. Unlike the conventional shoe-mounted human power harvesters that use solid coil and gear mechanism, the proposed system employs liquid metal (Ga In Sn ) as energy carrier, where no moving part is requested in magnetohydrodynamics generators (MHGs). While walking with the LMMGS, the foot alternately presses the two liquid metal pumps (LMPs) which are respectively placed in the front and rear of the sole. As a result, the liquid metal in the LMPs (LMP I and II) is extruded and flows through the MHGs (MHG I and II) in which electricity is produced. For a comparison, three types of LMMGSs (LMMGS A, B and C) were built where all the parts are the same except for the LMPs. Furthermore, performances of these LMMGSs with different volume of injected liquid metal were tested respectively. Experimental results reveal that both the output voltage and power of the LMMGS increase with the volume of injected liquid metal and the size of the LMPs. In addition, a maximum output power of 80 mW is obtained by the LMMGS C with an efficiency of approximately 1.3%. Given its advantages of no side effect, light weight, small size and reliability, The LMMGS is well-suited for powering the wearable and implantable micro/nano device, such as wearable sensors, drug pumps and so on.

关键词: human energy harvesting     liquid metal     wearable magnetohydrodynamics generator     parasitic power in shoe    

Flow and thermal modeling of liquid metal in expanded microchannel heat sink

《能源前沿(英文)》   页码 796-810 doi: 10.1007/s11708-023-0877-5

摘要: Liquid metal-based microchannel heat sinks (MCHSs) suffer from the low heat capacity of coolant, resulting in an excessive temperature rise of coolant and heat sink when dealing with high-power heat dissipation. In this paper, it was found that expanded space at the top of fins could distribute the heat inside microchannels, reducing the temperature rise of coolant and heat sink. The orthogonal experiments revealed that expanding the top space of channels yielded similar temperature reductions to changing the channel width. The flow and thermal modeling of expanded microchannel heat sink (E-MCHS) were analyzed by both using the 3-dimensional (3D) numerical simulation and the 1-dimensional (1D) thermal resistance model. The fin efficiency of E-MCHS was derived to improve the accuracy of the 1D thermal resistance model. The heat conduction of liquid metal in Z direction and the heat convection between the top surface of fins and the liquid metal could reduce the total thermal resistance (Rt). The above process was effective for microchannels with low channel aspect ratio, low mean velocity (Um) or long heat sink length. The maximum thermal resistance reduction in the example of this paper reached 36.0%. The expanded space endowed the heat sink with lower pressure, which might further reduce the pumping power (P). This rule was feasible both when fins were truncated (h2 < 0, h2 is the height of expanded channel for E-MCHS) and when over plate was raised (h2 > 0).

关键词: liquid metal cooling     heat sink     expanded microchannel     flow and thermal modeling    

Al-NaOH复合液态金属——一种具有热和气动特性且快速响应的水触发材料 Article

袁博, 孙旭阳, 刘静

《工程(英文)》 2020年 第6卷 第12期   页码 1454-1462 doi: 10.1016/j.eng.2019.08.020

摘要:

水触发材料因其操作简单、驱动柔和、成本低廉、环境友好等诸多优点受到越来越多的关注。但是,大多数此类材料通常具有较长的反应时间,并且需要严格的保存条件,这限制了它们在实践中的适应性。本研究提出并证明了一种基于Al-NaOH复合共晶镓-铟(eGaIn)合金的新型水触发材料,该材料具有快速响应性和可变形性。一旦加入水,制成的材料将在短短几秒钟内随着气体的产生而升温40 ℃,这表明它具有用作热驱动器和气动驱动器的巨大潜力。此外,研究还测试了新材料的可重复使用性和降解能力。并据此设计了双层结构的智能绷带,其内部填充了Al-NaOH复合eGaIn,而BiInSn则作为外部支撑材料。实验显示,厚度为2 mm的片状结构经过冷却处理后能够支撑1.8 kg的重物,这比常用的玻璃纤维高分子绷带的承重能力要好得多。同时,研究还使用Al-NaOH复合eGaIn制作了水触发球形机器人的原型,该原型在特定的外部刺激下实现了滚动和弹跳行为。这些发现表明,当前材料在开发未来的可穿戴设备、软驱动器和软机器人方面具有潜在价值。

关键词: 液体金属     水触发材料     自热材料     软驱动器    

Room temperature liquid metal: its melting point, dominating mechanism and applications

Junheng FU, Chenglin ZHANG, Tianying LIU, Jing LIU

《能源前沿(英文)》 2020年 第14卷 第1期   页码 81-104 doi: 10.1007/s11708-019-0653-8

摘要: The room temperature liquid metal (LM) is recently emerging as a new class of versatile materials with fascinating characteristics mostly originated from its simultaneous metallic and liquid natures. The melting point is a typical parameter to describe the peculiarity of LM, and a pivotal factor to consider concerning its practical applications such as phase change materials (PCMs) and advanced thermal management. Therefore, the theoretical exploration into the melting point of LM is an essential issue, which can be of special value for the design of new LM materials with desired properties. So far, some available strategies such as molecular dynamics (MD) simulation and classical thermodynamic theory have been applied to perform correlative analysis. This paper is primarily dedicated to performing a comprehensive overview regarding typical theoretical strategies on analyzing the melting points. It, then, presents evaluations on several factors like components, pressure, size and supercooling that may be critical for melting processes of liquid metal. After that, it discusses applications associated with the characteristic of low melting points of LM. It is expected that a great many fundamental and practical works are to be conducted in the coming future.

关键词: melting point     liquid metal     crystal     thermodynamics     molecular dynamics    

Perspective on gallium-based room temperature liquid metal batteries

《能源前沿(英文)》 2022年 第16卷 第1期   页码 23-48 doi: 10.1007/s11708-022-0815-y

摘要: Recent years have witnessed a rapid development of deformable devices and epidermal electronics that are in urgent request for flexible batteries. The intrinsically soft and ductile conductive electrode materials can offer pivotal hints in extending the lifespan of devices under frequent deformation. Featuring inherent liquidity, metallicity, and biocompatibility, Ga-based room-temperature liquid metals (GBRTLMs) are potential candidates to fulfill the requirement of soft batteries. Herein, to illustrate the glamour of liquid components, high-temperature liquid metal batteries (HTLMBs) are briefly summarized from the aspects of principle, application, advantages, and drawbacks. Then, Ga-based liquid metals as main working electrodes in primary and secondary batteries are reviewed in terms of battery configurations, working mechanisms, and functions. Next, Ga-based liquid metals as auxiliary working electrodes in lithium and nonlithium batteries are also discussed, which work as functional self-healing additives to alleviate the degradation and enhance the durability and capacity of the battery system. After that, Ga-based liquid metals as interconnecting electrodes in multi-scenarios including photovoltaics solar cells, generators, and supercapacitors (SCs) are interpreted, respectively. The summary and perspective of Ga-based liquid metals as diverse battery materials are also focused on. Finally, it was suggested that tremendous endeavors are yet to be made in exploring the innovative battery chemistry, inherent reaction mechanism, and multifunctional integration of Ga-based liquid metal battery systems in the coming future.

关键词: liquid metals     soft electrodes     flexible batteries     deformable energy supply devices     epidermal electronics    

Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon

Yujie DING,Jing LIU

《能源前沿(英文)》 2016年 第10卷 第1期   页码 29-36 doi: 10.1007/s11708-015-0388-0

摘要: A composite liquid metal marble made of metal droplet coated with water film was proposed and its impact dynamics phenomenon was disclosed. After encapsulating the liquid metal into water droplets, the fabricated liquid marble successfully avoided being oxygenized by the metal fluid and thus significantly improved its many physical capabilities such as surface tension modification and shape control. The striking behaviors of the composite liquid metal marbles on a substrate at room temperature were experimentally investigated in a high speed imaging way. It was disclosed that such marbles could disintegrate, merge, and even rebound when impacting the substrate, unlike the existing dynamic fluidic behaviors of liquid marble or metal droplet. The mechanisms lying behind these features were preliminarily interpreted. This fundamental finding raised profound multiphase fluid mechanics for understanding the complex liquid composite which was also critical for a variety of practical applications such as liquid metal jet cooling, inkjet printed electronics, 3D printing or metal particle fabrication etc.

关键词: liquid metal marble     metallic droplet     composite fluid     impact dynamics     multiphase fluid mechanics    

Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic

Manli LUO, Jing LIU

《能源前沿(英文)》 2013年 第7卷 第4期   页码 479-486 doi: 10.1007/s11708-013-0277-3

摘要: There is currently a growing demand for developing efficient techniques for cooling integrated electronic devices with ever increasing heat generation power. To better tackle the high-density heat dissipation difficulty within the limited space, this paper is dedicated to clarify the heat transfer behaviors of the liquid metal flowing in mini-channel exchangers with different geometric configurations. A series of comparative experiments using liquid metal alloy Ga68%In20%Sn12% as coolant were conducted under prescribed mass flow rates in three kinds of heat exchangers with varied geometric sizes. Meanwhile, numerical simulations for the heat exchangers under the same working conditions were also performed which well interpreted the experimental measurements. The simulated heat sources were all cooled down by these three heat dissipation apparatuses and the exchanger with the smallest channel width was found to have the largest mean heat transfer coefficient at all conditions due to its much larger heat transfer area. Further, the present work has also developed a correlation equation for characterizing the Nusselt number depending on Peclet number, which is applicable to the low Peclet number case with constant heat flux in the hydrodynamically developed and thermally developing region in the rectangular channel. This study is expected to provide valuable reference for designing future liquid metal based mini-channel heat exchanger.

关键词: heat exchanger     liquid metal     mini-channel     heat dissipation     heat transfer coefficient    

Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling

Xiao-Hu YANG, Jing LIU

《能源前沿(英文)》 2018年 第12卷 第2期   页码 259-275 doi: 10.1007/s11708-017-0521-3

摘要: As a class of newly emerging material, liquid metal exhibits many outstanding performances in a wide variety of thermal management areas, such as thermal interface material, heat spreader, convective cooling and phase change material (PCM) for thermal buffering etc. To help mold next generation unconventional cooling technologies and further advance the liquid metal cooling to an ever higher level in tackling more extreme, complex and critical thermal issues and energy utilizations, a novel conceptual scientific category was dedicated here which could be termed as combinatorial liquid metal heat transfer science. Through comprehensive interpretations on a group of representative liquid metal thermal management strategies, the most basic ways were outlined for developing liquid metal enabled combined cooling systems. The main scientific and technical features of the proposed hybrid cooling systems were illustrated. Particularly, five abstractive segments toward constructing the combinatorial liquid metal heat transfer systems were clarified. The most common methods on innovating liquid metal combined cooling systems based on this classification principle were discussed, and their potential utilization forms were proposed. For illustration purpose, several typical examples such as low melting point metal PCM combined cooling systems and liquid metal convection combined cooling systems, etc. were specifically introduced. Finally, future prospects to search for and make full use of the liquid metal combined high performance cooling system were discussed. It is expected that in practical application in the future, more unconventional combination forms on the liquid metal cooling can be obtained from the current fundamental principles.

关键词: combinatorial heat transfer     liquid metal     high flux cooling     thermal management    

Liquid metal as energy transportation medium or coolant under harsh environment with temperature below

Yunxia GAO, Lei WANG, Haiyan LI, Jing LIU

《能源前沿(英文)》 2014年 第8卷 第1期   页码 49-61 doi: 10.1007/s11708-013-0285-3

摘要: The current highly integrated electronics and energy systems are raising a growing demand for more sophisticated thermal management in harsh environments such as in space or some other cryogenic environment. Recently, it was found that room temperature liquid metals (RTLM) such as gallium or its alloys could significantly reduce the electronics temperature compared with the conventional coolant, like water, oil or more organic fluid. However, most of the works were focused on RTLM which may subject to freeze under low temperature. So far, a systematic interpretation on the preparation and thermal properties of liquid metals under low temperature (here defined as lower than 0°C) has not yet been available and related applications in cryogenic field have been scarce. In this paper, to promote the research along this important direction and to overcome the deficiency of RTLM, a comprehensive evaluation was proposed on the concept of liquid metal with a low melting point below zero centigrade, such as mercury, alkali metal and more additional alloy candidates. With many unique virtues, such liquid metal coolants are expected to open a new technical frontier for heat transfer enhancement, especially in low temperature engineering. Some innovative ways for making low melting temperature liquid metal were outlined to provide a clear theoretical guideline and perform further experiments to discover new materials. Further, a few promising applied situations where low melting temperature liquid metals could play irreplaceable roles were detailed. Finally, some main factors for optimization of low temperature coolant were summarized. Overall, with their evident merits to meet various critical requirements in modern advanced energy and power industries, liquid metals with a low melting temperature below zero centigrade are expected to be the next-generation high-performance heat transfer medium in thermal managements, especially in harsh environment in space.

关键词: liquid metal     cryogenics     low melting point     thermal management     aircraft     liquid cooling     space exploration    

标题 作者 时间 类型 操作

Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy

Lei WANG, Jing LIU

期刊论文

High heat flux thermal management through liquid metal driven with electromagnetic induction pump

期刊论文

液态金属科技与工业的崛起:进展与机遇

刘静

期刊论文

A multiscale material model for heterogeneous liquid droplets in solid soft composites

期刊论文

Surface tension of liquid metal: role, mechanism and application

Xi ZHAO, Shuo XU, Jing LIU

期刊论文

Liquid metal thermal hydraulics R&D at European scale: achievements and prospects

期刊论文

Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics

Dan DAI, Jing LIU, Yixin ZHOU

期刊论文

Flow and thermal modeling of liquid metal in expanded microchannel heat sink

期刊论文

Al-NaOH复合液态金属——一种具有热和气动特性且快速响应的水触发材料

袁博, 孙旭阳, 刘静

期刊论文

Room temperature liquid metal: its melting point, dominating mechanism and applications

Junheng FU, Chenglin ZHANG, Tianying LIU, Jing LIU

期刊论文

Perspective on gallium-based room temperature liquid metal batteries

期刊论文

Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon

Yujie DING,Jing LIU

期刊论文

Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic

Manli LUO, Jing LIU

期刊论文

Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling

Xiao-Hu YANG, Jing LIU

期刊论文

Liquid metal as energy transportation medium or coolant under harsh environment with temperature below

Yunxia GAO, Lei WANG, Haiyan LI, Jing LIU

期刊论文